Arabidopsis TSO1 regulates directional processes in cells during floral organogenesis.

نویسندگان

  • B A Hauser
  • J M Villanueva
  • C S Gasser
چکیده

Flowers of the previously described Arabidopsis tso1-1 mutant had aberrant, highly reduced organs in place of petals, stamens, and carpels. Cells of tso1-1 flowers had division defects, including failure in cytokinesis, partial cell wall formation, and elevated nuclear DNA content. We describe here two new tso1 alleles (tso1-3 and tso1-4), which caused defects in ovule development, but had little effect on gross floral morphology. Early ovule development occurred normally in tso1-3 and tso1-4, but the shapes and alignments of integument cells became increasingly more disordered as development progressed. tso1-3 ovules usually lacked embryo sacs due to a failure to form megaspore mother cells. The cell division defects described for the strong tso1-1 mutant were rarely observed in tso1-3 ovules. The aberrations in tso1-3 mutants primarily resulted from a failure in directional expansion of cells and/or coordination of this process among adjacent cells. Effects of tso1-3 appeared to be independent of effects of other ovule development mutations, with the exception of leunig, which exhibited a synergistic interaction. The data are consistent with TSO1 acting in processes governing directional movement of cellular components, indicating a likely role for TSO1 in cytoskeletal function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TSO1 functions in cell division during Arabidopsis flower development.

We describe an Arabidopsis mutant, tso1, which develops callus-like tissues in place of floral organs. The tso1 floral meristem lacks properly organized three cell layers, and the nuclei of these cells are irregular in size and shape. Further analyses reveal partially formed cell walls and increased DNA ploidy in tso1 floral meristem cells, indicating defects in mitosis and cytokinesis. Our fin...

متن کامل

The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana.

Development of reproductive tissue and control of cell division are common challenges to all sexually reproducing eukaryotes. The Arabidopsis thaliana TSO1 gene is involved in both these processes. Mild tso1 mutant alleles influence only ovule development, whereas strong alleles have an effect on all floral tissues and cause cell division defects. The tso1 mutants described so far carry point m...

متن کامل

Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana.

Our understanding of the molecular mechanisms that regulate and integrate the temporal and spatial control of cell proliferation during organ ontogenesis, particularly of floral organs, continues to be primitive. The ovule, the progenitor of the seed, of Arabidopsis thaliana has been used to develop an effective model system for the analysis of plant organogenesis. A typical feature of a genera...

متن کامل

Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis.

The control of cell proliferation during organogenesis plays an important role in initiation, growth, and acquisition of the intrinsic size of organs in higher plants. To understand the developmental mechanism that controls intrinsic organ size by regulating the number and extent of cell division during organogenesis, we examined the function of the Arabidopsis regulatory gene AINTEGUMENATA (AN...

متن کامل

Recessive Antimorphic Alleles Overcome Functionally Redundant Loci to Reveal TSO1 Function in Arabidopsis Flowers and Meristems

Arabidopsis TSO1 encodes a protein with conserved CXC domains known to bind DNA and is homologous to animal proteins that function in chromatin complexes. tso1 mutants fall into two classes due to their distinct phenotypes. Class I, represented by two different missense mutations in the CXC domain, leads to failure in floral organ development, sterility, and fasciated inflorescence meristems. C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 150 1  شماره 

صفحات  -

تاریخ انتشار 1998